
MetaCompose: A Compositional Evolutionary
Music Composer

Marco Scirea1, Julian Togelius2, Peter Eklund1, and Sebastian Risi1

1 IT University of Copenhagen, Denmark
msci@itu.dk

WWW homepage: http://www.itu.dk/msci
2 New York University, USA

Abstract. This paper describes a compositional, extensible framework
for music composition and a user study to systematically evaluate its core
components. These components include a graph traversal-based chord se-
quence generator, a search-based melody generator and a pattern-based
accompaniment generator. An important contribution of this paper is
the melody generator which uses a novel evolutionary technique com-
bining FI-2POP and multi-objective optimization. A participant-based
evaluation overwhelmingly confirms that all current components of the
framework combine effectively to create harmonious, pleasant and inter-
esting compositions.

Keywords: Evolutionary computing, genetic algorithm, music genera-
tor

1 Introduction

Computer music generation is an active research field encompassing a wide range
of approaches [1]. There are many reasons for wanting to build a computer system
that can competently generate music. One is that music has the power to evoke
moods and emotions – even music generated algorithmically [2]. In some cases the
main purpose of a music generation algorithm is to evoke a particular mood. This
is true for music generators that form part of highly interactive systems, such
as those supporting computer games. In such systems a common goal of music
generation is to elicit a particular mood that dynamically suits the current state
of the game play. Music generation for computer games can be seen in the content
of an experience-driven procedural content generation framework (EDPCG) [3],
where the game adaptation mechanism generates music with a particular mood
or affect expression in response to player actions.

While the medium-term goal of our system (described in Section 3) focuses
on this kind of affect expression, this paper describes work on the core aspects
of music generation, without expressly considering affective impact.

In games, unlike in traditional sequential media such as novels or movies,
events unfold in response to player input. Therefore, a music composer for an
interactive environment needs to create music that is dynamic while also being



non-repetitive. This applies to a wide range of games but not all of them; for
example rhythm games make use of semi-static music around which the gameplay
is constructed. The central research question in this paper is how to create music
that is dynamic and responsive in real-time, maintaining fundamental musical
characteristics such as harmony, rhythm, etc. We describe a component-based
framework for (i) the generation of a musical abstraction and (ii) real-time music
creation through improvisation. Apart from the description of the method the
main research question of this paper is validating the music generation
algorithm: do all the components of the system add to the music
generated? To that end we present and discuss the results of a participant-
based evaluation study.

2 Background

2.1 Procedurally generated music

Procedural generation of music is a field that has received much attention over
the last decade. The approaches taken are diverse, they range from creating sim-
ple sound effects, to avoiding repetition when playing human-authored music, to
creating more complex harmonic and melodic structures [4]. A variety of differ-
ent approaches to procedural music generation have been developed, which can
be divided into: transformational and generative algorithms [5]. MetaCompose
falls in the latter category as it creates music without having any predefined
snippets to modify or recombine.

Similar work to ours can be found in the system described by Robertson
[6], which focuses on expressing fear. There are some parallels with this work,
as the representation of the musical data through an abstraction (in their case
the CHARM representation [7]), yet we claim our system has a higher affective
expressiveness since it aims to express multiple moods via music. There are many
examples of using evolutionary approaches to generating music, two example are
the work of Loughran et al [8] and Dahlstedt’s evolution of piano pieces [9], many
more can be found in the Evolutionary Computer Music book [10].

Other examples of real-time music generation can be found in some patents:
a system that allows the user to play a solo over some generative music [11] and a
system that can create complete concerts in real time [12]. An interesting parallel
between the second system and ours is the incorporation of measures of “dis-
tance” between music snippets to reduce repetition. Still, both these approaches
present no explicit affective expression techniques.

The work of Livingstone [13] in trying to define a dynamic music environment
where music tracks adjust in real-time to the emotions of the game character
(or game state). While this work is interesting, it is still limited (in our opin-
ion), by the usage of predefined music tracks for affective expression. Finally
Mezzo[14], a system designed by Daniel Brown that composes neo-Romantic
game soundtracks in real time, creates music that adapts to emotional states of
the character, mainly through the manipulation of leitmotifs.



2.2 Multi-Objective Optimization

Multi-Objective Optimization (MOO) is defined as the process of simultaneously
optimizing multiple objective functions. In most multi-objective optimization
problems, there is no single solution that simultaneously optimizes every objec-
tive. In this case, the objective functions are said to be partially conflicting, and
there exists a (possibly infinite) number of Pareto optimal solutions. A solution
is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none
of the objective functions can be improved in value without degrading some of
the other objective values. Therefore, a practical approach to multi-objective
optimization is to investigate a set of solutions (the best-known Pareto set) that
represent the Pareto optimal set as much as possible [15]. Many Multi-Objective
Optimization approaches using Genetic Algorithms (GAs) have been developed.
The literature on the topic is vast; Coello lists more than 2000 references on this
topic in his website3.

Our approach builds on the successful and popular NSGA-II algorithm [16].
The objective of the NSGA-II algorithm is to improve the adaptive fit of a pop-
ulation of candidate solutions to a Pareto front constrained by a set of objective
functions. The population is sorted into a hierarchy of sub-populations based
on the ordering of Pareto dominance. Similarity between members of each sub-
group is evaluated on the Pareto front, and the resulting groups and similarity
measures are used to promote a diverse front of non-dominated solutions.

2.3 Feasible/Infeasible 2-Population Genetic Algorithm

Many search/optimization problems have not only one or several numerical ob-
jectives, but also a number of constraints – binary conditions that need to be
satisfied for a solution to be valid. The approach we adopted for melody gen-
eration contains such strong rules, that are described in detail in Section 5.2.
A number of constraint handling techniques have been developed to deal with
such cases within evolutionary algorithms. FI-2POP [17] is a constrained evolu-
tionary algorithm that keeps two populations evolving in parallel, where feasible
solutions are selected and bred to improve their objective function values while
infeasible solutions are selected and bred to reduce their constraint violations.
Each generation, individuals are tested to see if they violate the constraints; if
so they are moved to the ’Infeasible’ population, otherwise they are moved to
the ’Feasible’ one. An interesting feature of this algorithm is that the infeasible
population influences, and sometimes dominates, the genetic material of the op-
timal solution. Since the infeasible population is not evaluated by the objective
function it cannot get stuck in a sub-optimal solution, but it is free to explore
boundary regions, where the optimum is most likely to be found.

3 http://www.cs.cinvestav.mx/˜constraint/papers/



Fig. 1. Steps for generating a composition.

3 MetaCompose

The presented system is composed of three main components: (i) composition
generator, (ii) real-time affective music composer and (iii) an archive of previous
compositions. The modular nature of the system allows components to be eas-
ily swapped for other components or augmented with further components. The
archive (iii) maintains a database of all the previous compositions connected to
the respective levels/scenes of the game. The archive allows persistence of com-
positions for later reuse, but also allows us to compute a measure of novelty for
future compositions compared with what has already been heard. This database
could also be extended to connect compositions to specific characters, events,
game levels, etc. The real-time affective music composer is the component that
transforms a composition in the final score according to a specific mood or affec-
tive state. The system is designed to be able to react to game events, such events
depending on the effect desired, examples of responses to such events include a
simple change in the affective state, a variation of the current composition or an
entirely new composition.

4 Non-dominated Sorting Feasible-Infeasible 2
Populations

Usually, when dealing with constrained optimization problems, the solution
adopted is the introduction of penalty functions to act as constraints. This ap-
proach favors the feasible solutions to the infeasible ones, potentially removing
infeasible individuals that might lead to an optimal solution, and getting the
solutions stuck at a local optimum. There have been many examples of a con-
strained multi-objective optimization algorithms [18] [19] [20] [21].

Presented here is a combination of FI-2POP and NSGA-II dubbed Non-
dominated Sorting Feasible-Infeasible 2 Populations (NSFI-2POP), uniting the
benefits of keeping an infeasible population, which is free to explore the solution
space without being dominated by the objective fitness function(s), and find-
ing the Pareto optimal solution for multiple objectives. The algorithm takes the



Fig. 2. Common chord progression map for major scales, created by Steve Mugglin [22].

structure of FI-2POP, but the objective function of the feasible function is sub-
stituted with the NSGA-II algorithm. In section 5.2 is described an application
of this approach to the evolution of melodies.

5 Composition Generation

Composition in this paper is a chord sequence, a melody and an accompani-
ment. It is worth noting that the accompaniment is only an abstraction and not
a complete score of a possible accompaniment, which is described in detail in
Section 5.3 below. The main reason for the deconstruction of compositions is
that we want a general structure (an abstraction) that makes music recogniz-
able and gives it identity. Generating abstractions, which themselves lack some
information that one would include in a classically composed piece of music, e.g.
tempo, dynamics, etc, allows the system to modify the music played in real-time
depending on the affective state the game-play wishes to convey. The generation
of compositions is a process with multiple steps: (i) create a chord sequence, (ii)
evolve a melody fitting this chord sequence, and (iii) create an accompaniment
for the melody/chord sequence combination (see Fig. 1).

5.1 Chord Sequence Generation

The method for generating a chord sequence works as follows: we use a directed
graph of common chord sequences and preform random walks on this graph (see
Fig. 2) starting from a given chord. As can be seen from the Fig. 2, the graph
does not use a specific key, but rather ’degrees’: in music theory, a degree (or scale
degree) is the name given to a particular note of a scale to specify its position
relative to the ’tonic’ (the main note of the scale). The tonic is considered to
be the first degree of the scale, from which each octave is assumed to begin.



The degrees in Fig. 2 are expressed in Roman numerals and, when talking about
chords, the numeral in upper-case letters symbolizes a major chord, while lower-
case letters (usually followed by an m) express a minor chord. Other possible
variations on the chord are generally expressed with numbers and other symbols,
which we don’t list for the sake of brevity. So, if we consider the D major scale,
the Dmajor chord would correspond to a I degree, while a iiim degree would
be a F]minor. Various parameters of this sequence can be specified, such as
sequence length, first element, last element, chord to which the last element can
resolve properly (e.g., if we specify that we want the last chord to be able to
resolve in the V degree, the last element might be a IV or a iim degree).

An interesting aspect of this graph is that it also shows common resolutions
to chords outside of the current key, which provide a simple way of dealing with
key changes. Each chord can be interpreted as a different degree depending on
which key is considered, so if we want a key change we can simply: (i) find out
which degree the last chord in the sequence will be in the new key and (ii) follow
the graph to return to the new key. This produces harmonious key changes which
do not sound abrupt.

5.2 Melody Generation

Melodies are generated with an evolutionary approach. We define a number of
features to both include and avoid in melodies based on classical music compo-
sition guidelines and personal musical practice. These features are divided into
constraints and objective functions. Accordingly, we use a Feasible/Infeasible
two-population method (FI-2POP [17]) with multi-objective optimization [23]
for the Feasible population. Given a chord sequence, a variable number of notes is
generated for each chord, which will evolve without duration information. Once
the sequence of notes is created, we generate the duration of the notes randomly.

Genome Representation The evolutionary genome consists of a number of
values (the number of notes to be generated) that can express the notes belonging
to two octaves of a generic key (i.e. 0-13). Here, we do not introduce notes that
do not belong to the key, effectively making the context in which the melodies
are generated strictly diatonic. Alterations will appear in later stages, in the
real-time affective music composer module, when introducing variations of the
composition to express affective states or chord variations.

Constraints We have three constraints: a melody should: (i) not have leaps
between notes bigger than a fifth, (ii) contain at least a minimum amount of
leaps of a second (50% in the current implementation) and (iii) each note pitch
should be different than the preceding one.

Feasibleness = −
n−1∑
i=0

(Second(i, i + 1) + BigLeap(i, i + 1) + Repeat(i, i + 1))

where n is the genome length (1)



The three functions comprising equation 1 are all boolean functions that return
either 1 or 0 depending if the two notes at the specified indexes of the genome
satisfy the constraint or not. As can be seen, this function returns a number that
ranges from (potentially) −∞ to 0, where reaching the 0 score determines that
the individual satisfies all the constraints and, consequently, can be moved from
the unfeasible population to the feasible one.

On the constraints in eqn 1, leaps larger than a fifth do appear in music but
they are avoided here, as experience suggest they are too hard on the ear of the
listener. Namely, if the listener is not properly prepared, leaps larger than a fifth
can easily break the flow of the melody. We also specify a minimum number
of intervals of a second (the smallest interval possible considering a diatonic
context such as this one, see the Genome Representation section) because if the
melody has too many larger leaps it feels more unstructured, and not something
that we would normally hear or expect a voice to sing. Finally the constraint on
repetition of notes is justified by the fact that these will be introduced in the
real-time interpretation of the abstraction.

Fitness Functions Three objectives build to compose the fitness functions:
the melody should (i) approach and follow big leaps (larger than a second) in
a counter step-wise motion (explained below) (eqn 2), (ii) where the melody
presents big leaps the leap notes should belong to the underlying chord (eqn 3)
and finally (iii) the first note played on a chord should be part of the chord
(eqn 4).

CounterStep =∑n−1
i=0 [IsLeap(i, i + 1)(PreCounterStep(i, i + 1) + PostCounterStep(i, i + 1))]

leapsN
(2)

ChordOnLeap =∑n−1
i=0 [IsLeap(i, i + 1)(BelongsToChord(i) + BelongsToChord(i + 1))]

leapsN
(3)

FirstNoteOnChord =

∑n
i=0(IsFirstNote(i)× BelongsToChord(i))

chordsN
(4)

First, we remind the reader that the definition of an interval in music theory is
the difference between two pitches. In Western music, intervals are mostly
differences between notes belonging to the diatonic scale (for example, consid-
ering a Cmajor key, the interval between C and D is a second, the interval
between C and E is a third and so on).

To clarify what counter step-wise motion means: if we examine a leap of
a fifth from C to G as in Fig. 3 (assuming we are in a Cmajor key), this is
a upward movement from a lower note to a higher one, a counter step-wise
approach would mean that the C would be preceded by a higher note (creating
a downward movement) with an interval of a second, so a D. Likewise following



Fig. 3. Example of counter step-wise approach and departure from a leap (C-G).

the leap in a counter step-wise motion would mean that we need to create a
downward movement of a second after the G, so we need an F to follow. The
reason we introduce this objective is that this simple technique makes leaps much
easier on the listener’s ear, otherwise they often sound too abrupt by suddenly
changing the range of notes the melody is playing. The PreCounterStep and
PostCounterStep functions are boolean functions that respectively check if the
note preceding and following the leap approaches or departs with a contrary
interval of a second.

The reason for having the leap notes – the two notes that form a leap bigger
than a second – be part of the underlying chord is that leaps are intrinsically more
interesting than a step-wise motion, this means that the listener unconsciously
considers them more meaningful and pays more attention to them. If these leaps
contain notes that have nothing to do with the underlying chord, even if they do
not present real dissonances, they will be perceived as dissonant because they
create unexpected intervals with the chord notes. Trying to include them as part
of the chord gives a better sense of coherence that the listener will consider as
pleasant. The last objective simply underlines the importance of the first note
after a chord change, by playing a note that is part of the chord we reinforce the
change and make it sound less discordant.

Note that these objectives, by the nature of multi-objective optimization,
will generally not all be completely satisfied. This is fine, because satisfying all
objectives might make the generated music sound too mechanical, while these
are “soft” rules that we want to enforce only to a certain point (contrary to the
constraints of the infeasible population, which always need to be satisfied).

5.3 Accompaniment Generation

Accompaniment is included in the composition because, not only chords and
melody give identity to music, but also rhythm. The accompaniment is divided
into two parts: a basic rhythm (a collection of note duration) and a basic
note progression (an arpeggio). We can progress from the accompaniment
representation to a score of the accompaniment by creating notes with duration
from the basic rhythm and pitches from the progressions (offset on the current
underlying chord).

Accompaniments are generated through a stochastic process involving com-
binations and modifications (inversions, mutations, etc) of some elements taken
from a small archive of basic rhythms. Specifically we have four basic rhythm
patterns and two basic arpeggios (see Figs. 4 & 5).



� � �� � Rhythm 3�
�

�
�
� �
�

� Rhythm 4�Rhythm 1� �� � �� � �
�

Rhythm 2�

Fig. 4. Basic rhythms.

� �� �
Arp2-major

� � ��� �
Arp2-minor

� � ��
Arp1-major

� � �� ��
Arp1-minor

Fig. 5. Basic arpeggios. These are represented as if they were played under a C major or
C minor chord, but are transposed depending on what chord they appear underneath.
Also the rhythmic notation of the arpeggio is dependent on the rhythmic structure.

The algorithm performs the following steps:

1. choose a basic rhythm and basic arpeggio;
2. shuffle the elements of the basic rhythm;
3. shuffle the elements of the arpeggio;
4. increase the basic rhythm: with a probability of 0.5, either the biggest

(longest duration) or a random element is split in two elements of half the
size of the original duration. This function is called recursively with linearly
decreasing probability;

5. increase the arpeggio to match the new size of the basic rhythm: this is done
by introducing at a random index of the arpeggio a new random pitch that
already belongs to the arpeggio.

The rhythm presented in the final music will be modified by the real-time af-
fective music composer for variety or for affect expression, while still maintaining
a rhythmic and harmonic identity that will be characteristic of the composition.

6 Experiment design

We performed an extensive quantitative study to validate our music genera-
tion approach. The main objective is to investigate the contribution of each
component of the framework to the quality of the music created. To do this,
we systematically switched off components of our generator and replaced them
with random generation. From these random “broken” compositions and the
complete algorithm we created various pair-wise samples to test against each
other. (This method was inspired by the “ablation studies” performed by e.g.
Stanley [24]). As the quality of music is a subjective matter, we conducted a sur-
vey where participants are asked to prefer one of two pieces of music presented
to them (one generated by the complete algorithm and one from a “broken”
generator with one component disabled) and evaluate them according to four
criteria: pleasantness, randomness, harmoniousness and interestingness. Using
these four criteria presents a good overview of the preference expressed by the



participant. Note that no definition of these terms is offered in the survey, so we
have no guarantee they might not be interpreted differently by individual test
subjects.

Pleasantness measures how pleasing to the ear the piece is, but this alone is
not sufficient to describe the quality of the music produced. There are countless
pieces of music that do not sound pleasant, but may nonetheless be considered
by the listener as “good” music. In fact, in music, it is of course common to intro-
duce uncommon (and even discordant) chord sequences or intervals to express
different things like affect, narrative information and other effects. Also note
that some alterations or passages can be specific of a music style. Moreover, dis-
cordant intervals is more and more accepted to the ear the more repeated they
are (see dodecaphonic music, for example).

Interestingness is introduced to overcome the just described limitations of
the pleasantness criteria: in this way we are able to test if one of our “broken”
versions might introduce something that would result in something considered
interesting to the listener, even when the composition is not as pleasant or har-
monic. Note that this is a very subjective measure, as most people would find
different things interesting.

On the other hand, harmoniousness might be confused with pleasantness,
but we hope that it will be seen as a more objective measure: less of a personal
preference and more of an ability to recognize the presence of dissonances and
harmonic passages.

Finally, randomness gathers a measure of how structured the music appears
to the listener. It is not only a measure of dissonance (or voices being off-key),
but also of how much the music seems to have a cohesive quality and internal
structure. Examples of internal structure are: (i) voices working together well (ii)
coherent rhythmic structure (iii) the chord sequence presents tension building
and resolution.

An online survey was developed with HTML and PHP, using a MySQL
database to hold the data collected. Participants were presented with pairs-
wise music clips and asked to evaluate them using the previously described four
criteria. Each criteria has a multiple choices question structured as:

Which piece do you find more pleasing? “Clip A”/“Clip B”/“Neither”/
“Both Equally”

Where the last word (e.g. “pleasing”) is dependent on the criteria. We also
include the more neutral answers “Neither” and “Both Equally” to avoid ran-
domness in the data from participants who cannot decide which clip satisfies
the evaluation criteria better or worse. Other benefits of doing this are: avoid-
ing the participant getting frustrated and giving us some possibly interesting
information on cases where the pieces are considered equally good/bad.

Note that for the first five questions in the survey instrument the pair-wise
clips always included one clip from the complete generator. After five trials, the
clip pairs are picked at random between all the groups. In this way, we hoped
to collect enough data to be able to make some observations between the four



“broken” generators. The motivation behind this design choice is that our main
question is evaluating the complete generator against all possible alternatives,
so attention to the complete architectural music generator has priority. This
also has a practical justification in the fact that, with the number of groups
we have (five), testing all possible combinations and gather enough data would
be near impossible. The survey has no pre-defined end: the user is able to con-
tinue answering until he/she wants, and can close the online survey at any time
or navigate away from it without data loss. In the preamble, we encouraged
participants to do at least five comparisons.

6.1 Music clip generation

The five groups were examined (as dictated by the architecture of our generator):

A. Complete generator: normal composition generator as described in Sec-
tion 5;

B. Random chord sequence: the chord sequence module is removed and re-
placed with a random selection of chords;

C. Random unconstrained melody: the melody generation evolutionary al-
gorithm is replaced with a random selection between all possible notes in the
melody range (two octaves);

D. Random constrained melody: the melody generation evolutionary algo-
rithm is replaced with a random selection between all possible notes belong-
ing to the key of the piece in the melody range (two octaves). We decided
this was necessary as (by design) our melody evolution approach is restricted
to a diatonic context;

E. Random accompaniment: the accompaniment generation is replaced by
a random accompaniment abstraction (we remind the reader that an accom-
paniment abstraction is defined by a basic rhythm and note sequence).

For each of these 5 groups, 10 pieces of music are created. For the sake of
this experiment the affect expression has been kept to a neutral state for all
the groups and we used the same algorithms to improvise on the composition
abstraction. There is therefore no test of the music generators affect generation
but rather of the music quality form the complete architecture compared to the
architectural alternatives. The clips for the various groups can be accessed at
http://msci.itu.dk/evaluationClips/

7 Results and analysis

The data collected amounts to a total of 1,291 answers for each of the four
evaluation criteria from 298 participants. Of the survey trials generated, 1,248
contained a clip generated with our complete music generator algorithm (A).
Table 1 shows how many responses were obtained for each criteria and how
many neutral answers were collected.



Table 1. Amounts of correct, incorrect and neutral answers to our criteria for the
complete generator against all the “broken” generators (B-E) combined. Keep in mind
that in the case of the random criteria the listener is asked to select the clip that he/she
feels the most random, so it is entirely expected that a low number of participants
choose the random clip (E) against the complete generator (A).

Choice Pleasing Random Harmonious Interesting

Choose the complete generator (A) 654 197 671 482
Choose a “broken” generator (B-E) 240 633 199 327
A neutral answer 197 261 221 282
Total non-neutral answers 894 830 870 809

Binomial test p-value 7.44E-21 2.75E-77 2.05E-29 7.81E-02

For now we only consider definitive answers (the participant chooses one of
the music clips presented), we will look at the impact of the neutral answers at
the end of this section. Under this constraint, the data becomes boolean: the
answers are either “user chooses the clip from the complete generator (A)” or
“user chose the clip from the broken generator (B-E)”. To analyze this data we
use a two-tailed binomial test, which is an exact test of the statistical significance
of deviations from a theoretically expected random distribution of observations
into two categories. The null hypothesis is that both categories are equally likely
to occur and, as we have only two possible outcomes, that probability is 0.5.

7.1 Complete Generator against all other groups

Firstly, let us consider the combined results of all the “broken” groups (B-D)
against the complete generator (A): as can be seen from Tab. 1, we have sta-
tistically highly significant differences for the pleasing, random and harmonious
categories, while we have a p-value of 0.078 for the interesting category. This
means that we can refuse the null hypothesis and infer a difference in distribu-
tion between choosing the music generated by the complete algorithm (A) and
the “broken” ones (B-E).

We can affirm that our generator (A) ranked better than all the other ver-
sions (B-E) for three of our four criteria, with the exception of interestingness,
where there is no statistically significant difference. Interestingness is clearly a
very subjective measure, and this may explain the result. Moreover, examining
the ratio of neutral answers obtained for this criteria, it can be inferred that it is
almost 26%, so a much higher neutral response that for the other criteria. This
suggests that in a higher number of cases participants could not say which com-
position they found more interesting. A possible explanation is that, as the affect
expression (which also includes musical features such as tempo and intensity) is
held in a neutral state, equal for all pieces, after hearing a number of clips the lis-
tener does not find much to surprise him/her. Also the duration of the generated
pieces (30 s) might not allow sufficient time to determine interestingness.



Table 2. Answers and results of the binomial test for pairs comprised of the full
generator and the one with random chord sequences.

A versus B pleasing random harmonious interesting

successes 121 71 112 98
failures 93 117 84 98
totals 214 188 196 196

Binomial test p-value 3.23E-02 4.90E-04 2.68E-02 5.28E-01

Table 3. Answers and results of the binomial test for pairs comprised of the full
generator (A) and the one with unconstrained random melody (C).

Table 4. caption

A versus C pleasing random harmonious interesting

successes 221 21 236 144
failures 26 221 19 72
totals 247 242 255 216

Binomial test p-value 5.15E-40 1.44E-43 4.11E-49 5.46E-07

7.2 Complete Generator against random chord sequence generation

If we only consider the pairs that included the complete generator (A) and the
one with random chord sequences (B) (Tab. 2) we, again, obtain statistically
significant differences in the distribution of the answers for the pleasing, random
and harmonious criteria. In this case we have a very high p-value for interest-
ingness (more than 0.5), in fact we have the same amount of preference for
the complete generator (A) and the “broken” one (B). We can explain this by
considering that the disruptive element introduced by this modification of the
algorithm is mitigated by the fact that the rest of the system tries to create
as pleasing music as it can based on the chord sequence given. So, for most of
the time, the music will not have notes that sound out of key or that do not fit
well with the chord sequence. Still, we can observe how the listener is capable
of identifying that, while the piece does not sound discordant or dissonant, it
lacks the structure of tension-building and tension-releasing. This explains how
the complete generator (A) is preferred for all other criteria. It is interesting to
note how the act itself of presenting the listener with uncommon chord sequences
does create an increase in the interestingness of the music.

7.3 Complete Generator against unconstrained melody generation

When we consider the unconstrained melody group we have statistically signif-
icant differences for all criteria, with some extremely strong significance (Tab.
3). These results are as we expected, as the melody plays random notes that
conflict with both the chord sequence and the accompaniment.



Table 5. Answers and results of the binomial test for pairs comprised of the full
generator (A) and the one with constrained random melody (D).

A versus D pleasing random harmonious interesting

successes 125 81 120 108
failures 100 109 85 94
totals 225 190 205 202

Binomial test p-value 5.47E-02 2.49E-02 8.68E-03 1.80E-01

Table 6. Answers and results of the binomial test for pairs comprised of the full
generator (A) and the one with random accompaniment (E).

A versus E pleasing random harmonious interesting

successes 188 25 203 132
failures 21 186 12 63
totals 209 211 215 195

Binomial test p-value 5.00E-35 6.58E-32 3.01E-46 4.35E-07

7.4 Complete Generator against constrained melody generation

The results given by the constrained random melody generation (D) are more
interesting (Tab. 5). First, we notice no statistically significant values for the
pleasing and interesting criteria. This is explained by the fact that the melody
never goes off key, so it never presents off-key notes and never sounds abruptly
“wrong” to the listener’s ear. Yet, the random and harmonious criteria are sta-
tistically significant. Remembering how we described these criteria we notice
that the more more objective criteria (random and harmonious) are those that
demonstrate a difference in distribution. We believe this reinforces how, although
compositions made in this group never achieve a bad result, the listener is still
able to identify the lack of structure (randomness) and lack of consideration of
the underlying chords of the melody (harmoniousness). An example of the first
case would be a melody that jumps a lot between very different registers; this
would make the melody sound more random than the melodies we evolve using
(A), which follow more closely the guidelines of a singing voice. Harmoniousness
can be influenced by the fact that, over a chord (expressed by the accompani-
ment), the melody can play notes that create intervals that ’muddle’ the clarity
of the chord to the listener’s ear.

7.5 Complete Generator against random accompaniment generation

Finally, for the last group, the random accompaniment generation (E), gives us
very clear statistically significant results on all criteria (Table 6). A lot of the
harmony expression depends on the accompaniment generation, and when this
is randomized it is no wonder that the piece sounds confusing and discordant.
This is reflected in the trial data.



8 Conclusion and future work

This paper describes a new component-based system for music generation based
on creating an abstraction for musical structure that supports real-time impro-
visation. We focus on the method of creating the abstractions (“compositions”),
that consists of the sequential generation of (i) chord sequences, (ii) melody and
(iii) an accompaniment abstraction. Our novel approach is described to evolve
melody in detail: non-dominated sorting with two feasible-infeasible populations
genetic algorithm (NSFI-2POP).

Returning to the main question of the paper, (do all parts of the music gener-
ation system add to the music produced?We performed an extensive quantitative
study to validate our music generation approach. The main objective is to in-
vestigate the contribution of each component of the framework to the quality
of the music created. To do this, we systematically switched off components of
our generator and replaced them with random generation. From these random
“broken” compositions and the complete algorithm we created various pair-wise
samples to test against each other. (This method was inspired by the “ablation
studies” performed by e.g. Stanley [24]).), we have described an evaluation in
which we created music with our generator substituting various components with
randomized generators. In particular we observed four broken groups: random
chord sequences, random melody constrained (to the key of the piece), random
melody unconstrained and random accompaniment. An evaluation of the music
clips generated by these “broken” versions was compared to music clips created
by the complete algorithm according to four criteria: pleasantness, randomness,
harmoniousness and interestingness.

Analysis of the data supports the assertion that participants prefer the com-
plete system in three of the four criteria: (pleasantness, randomness and harmo-
niousness) to the alternatives offered. The results for the interestingness criteria
are however not definitive, but suggest that some parts of our generator have a
higher impact in this criteria. It is also noteworthy that there is no statistical
significant difference between preferences between constrained melody group (C)
and the complete generator (A) for the pleasantness criteria.

Future work will focus on developing and evaluating the affect-expression
capabilities of the system, we will probably follow the methodology described
by Scirea et al. for characterizing control parameters through crowd-sourcing
[25]. In summary, we show (i) how each part of our music generation method
assists creating music that the listener finds more pleasant and structured and
(ii) presented a novel GA method for constrained multi-objective optimization.

References

1. Papadopoulos, G., Wiggins, G.: Ai methods for algorithmic composition: A survey,
a critical view and future prospects. In: AISB Symposium on Musical Creativity,
Edinburgh, UK (1999) 110–117

2. Konečni, V.J.: Does music induce emotion? a theoretical and methodological anal-
ysis. Psychology of Aesthetics, Creativity, and the Arts 2(2) (2008) 115



3. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation.
IEEE Transactions on Affective Computing 2(3) (2011) 147–161

4. Miranda, E.R.: Readings in music and artificial intelligence. Volume 20. Routledge
(2013)

5. Wooller, R., Brown, A.R., Miranda, E., Diederich, J., Berry, R.: A framework for
comparison of process in algorithmic music systems. In: Generative Arts Practice
2005 — A Creativity & Cognition Symposium. (2005)

6. Robertson, J., de Quincey, A., Stapleford, T., Wiggins, G.: Real-time music gener-
ation for a virtual environment. In: Proceedings of ECAI-98 Workshop on AI/Alife
and Entertainment, Citeseer (1998)

7. Smaill, A., Wiggins, G., Harris, M.: Hierarchical music representation for compo-
sition and analysis. Computers and the Humanities 27(1) (1993) 7–17

8. Loughran, R., McDermott, J., O’Neill, M.: Tonality driven piano compositions
with grammatical evolution. In: IEEE Congress on Evolutionary Computation
(CEC), IEEE (2015) 2168–2175

9. Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances.
In: Proceedings of Music AL Workshop, Citeseer (2007)

10. Miranda, E.R., Biles, A.: Evolutionary computer music. Springer (2007)
11. Rigopulos, A.P., Egozy, E.B.: Real-time music creation system (May 6 1997) US

Patent 5,627,335.
12. Meier, S.K., Briggs, J.L.: System for real-time music composition and synthesis

(March 5 1996) US Patent 5,496,962.
13. Livingstone, S.R., Brown, A.R.: Dynamic response: Real-time adaptation for mu-

sic emotion. In: Proceedings of the 2nd Australasian Conference on Interactive
Entertainment. (2005) 105–111

14. Brown, D.: Mezzo: An adaptive, real-time composition program for game sound-
tracks. In: Proceedings of the AIIDE 2012 Workshop on Musical Metacreation.
(2012) 68–72

15. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary computation 8(2) (2000) 173–195

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on 6(2)
(2002) 182–197

17. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible–infeasible
two-population (fi-2pop) genetic algorithm for constrained optimization: Distance
tracing and no free lunch. Eur. J. Operational Research 190(2) (2008) 310–327

18. Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-
objective evolutionary optimization. In: Evolutionary Multi-Criterion Optimiza-
tion, Springer (2001) 284–298

19. Chafekar, D., Xuan, J., Rasheed, K.: Constrained multi-objective optimization
using steady state genetic algorithms. In: Genetic and Evolutionary Computa-
tionGECCO 2003, Springer (2003) 813–824

20. Jimenez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algo-
rithm for constrained multi-objective optimization. In: Proceedings of the Congress
on Evolutionary Computation, IEEE (2002) 1133–1138

21. Isaacs, A., Ray, T., Smith, W.: Blessings of maintaining infeasible solutions for
constrained multi-objective optimization problems. In: IEEE Congress on Evolu-
tionary Computation, IEEE (2008) 2780–2787

22. Mugglin, S.: Chord charts and maps. http://mugglinworks.com/chordmaps/chartmaps.htm
Accessed: 2015-09-14.



23. Deb, K.: Multi-objective optimization using evolutionary algorithms. Volume 16.
John Wiley & Sons (2001)

24. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary computation 10(2) (2002) 99–127

25. Scirea, M., Nelson, M.J., Togelius, J.: Moody music generator: Characterising
control parameters using crowdsourcing. In: Evolutionary and Biologically Inspired
Music, Sound, Art and Design. Springer (2015) 200–211


